Incorporating Water Resources
Impacts
In Integrated Assessment Models

Kenneth Strzepek

Joint Program on the Science and Policy of Global Change

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Elements of the Water System

- The Hydrologic System
 - Climate and Land Use
- The Managed Water Supply System
- Water Demand
 - Aquatic Ecosystem
 - Market Activities
 - Human Health
 - Non-Market Activities
- Excess Water
- Role in Economic Development

Source: Igor A. Shiklomanov, State Hydrological Institute (SHI, St. Petersburg) and United Nations Educational, Scientific and Cultural Organisation (UNESCO, Paris), 1999.

United States Water Use 2005

Public supply, 11 percent

Public supply water intake, Bay County, Florida

Irrigation, 34 percent

Gated-pipe flood irrigation, Fremont County, Wyoming

Aquaculture, less than 1 percent

World's largest trout farm, Buhl, Idaho

Mining, less than 1 percent

Spodumene pegmatite mine, Kings Mountain, North Carolina

Domestic, less than 1 percent

Livestock, less than 1 percent

Industrial, 5 percent

Thermoelectric power, 48 percent

Cooling towers, Burke County, Georgia

Modeling Water Resources Impacts in IAMS

We know how to model key water related at the River Basin Level
 Hydrology, Crops, Energy, M&I,

Combined Use of Optimization and Simulation Models in River Basin Planning Henry D. Jacoby & D. P. Loucks WATER RESOURCES RESEARCH, VOL. 8, NO. 6,, 1972

- What is the appropriate Spatial and Temporal Scale to accurately model climate change impacts for the questions being asked by IAMs or sectoral level analysis at what scale.
- IAMs
 - Spatial Scale: 10 to 20 regions: National lowest Scale
 - Temporal Scale: 1 to 5 year time steps
- Global Crop and Hydrologic Modeling at 0.1 to 0.5 degree dail
- There are over 10,000 level 4 River Basin "~20,000 km2"
- Water Mgt Models: "River Basin Scale" and Monthly

Spatial Scale Economic Components of Selected IAMs

MiniCAM: 14 Regions

the United States, US, Canada, W. Europe, Australia & New Zealand, Japan, Eastern Europe, The Former Soviet Union, China, Mid-East, Africa, Latin America, Korea, Southeast Asia, and India. In addition, three others are under development: Mexico, Argentina, and Brazil.

MERGE: 9 Regions

 Canada, Australia and New Zealand (CANZ); China; eastern Europe and the former Soviet Union (EEFSU); India; Japan; Mexico, and OPEC (MOPEC); western Europe (WEUR); the United States of America (USA); and the rest of the world (ROW).

IGSM/EPPA: 16 Regions

 United States (USA) European Union (EUR) Eastern Europe (EET) Japan (JPN) Former Soviet Union (FSU) Australia & New Zealand (ANZ) Canada (CAN China (CHN) India (IND) Higher Income East Asiad(ASI) Middle East (MES) Indonesia (IDZ) Mexico (MEX) Central & South America (LAM) Africa (AFR) Rest of World (ROW)

Fund: National Level

Global Water and AG IMPACTS Regional and National Scale

Southern SSA Region and 21 FPUs (10 reg)

Irrigation Water Demand

Irrigation Water Supply for Agriculture

WATER MANAGEMENT

- Bring Water to Where it is needed when it is needed
- Great Environmental Costs
- Market Benefit
- Social Costs and Benefits

Storage Yield Curves

Global Wet and Dry

Change in average annual precipitation, 2000 – 2050 CSIRO (DRY)

NCAR (WET)

Two extreme GCMs used to estimate range of costs

Cost of Adaptation in 2050 (Ward et 2010)

Water Supply

4 Spatial Scale Representations of Missouri River Basin

Average Monthly Hydropower Generation in each of the Missouri River Spatial Representations

Spatial Resolution Impacts on Estimated Crop Water Stress (Farmer et al, 2010)

Spatial Unit of Crop Modeling (Farmer et al, 2010)

- •0.5 Degree 3000 cells
- •2 degree 180 cells

	0.5	1.0	2.0
0.5	1.0	0.80	80.0
1.0		1.0	0.13
2.0			1.0

No Statistical Difference between 0.5 & 2 degree A p-value less than 0.05 will reject the null hypothesis.

River Basin Spatial Scale for USA 30 to 99¹ basins

¹Source: Subbasin Assessment Regions 1978 Water Resources Council, 2nd National Assessment

Mean Changes in Drought Index Values from Baseline B1, A1B, and A2 SRES Scenarios in Late 21st Century (Strzepek et al 2010)

Observation 4b: Emissions have a more pronounced effect on droughts when both temperature and precipitation are considered.

CO₂ Concentration vs. Mean Change in Drought Months from Baseline: PDSI-Extreme Drought Index

Boston Design Storm 2050 Current Uncertainty in 100 yr Storm much greater than range of GCM Changes

CC Impacts on Roadway Bridges USEPA by Stratus

Table 13. Number of currently deficient bridges per 2-digit HUC vulnerable to climate change for the historical 100-year, 24-hour storm. This includes currently deficient bridges with a projected increase in modeled flow of more than 20% for three future emissions scenarios (A2, A1B, B1) and two time periods (2055, 2090).

HUC	A2 2055	A1B 2055	B1 2055	A2 2090	A1B 2090	B1 2090
1	2,430	3,026	1,428	2,904	2,717	2,726
2	7,395	3,871	3,409	8,734	8,100	4,749
3	15,106	7,772	6,860	23,072	19,552	3,987
4	4,556	3,675	4,482	4,975	5,198	4,629
5	11,996	8,458	6,350	12,654	12,870	10,156
6	2,875	3,105	3,677	4,306	4,306	2,980
7	7,246	6,030	5,591	8,129	8,405	4,354
8	6,114	541	1,404	11,761	4,669	1,325
9	351	221	343	351	356	325
10	11,722	8,205	6,539	10,329	12,453	9,979
11	5,774	1,648	925	6,516	5,481	4,612
12	6,254	1,783	1,440	7,433	5,300	9,617
13	453	426	291	528	515	538
14	502	274	250	400	405	486
15	773	285	123	752	493	301
16	545	360	463	515	545	534
17	4,665	2,675	1,666	5,545	3,688	3,011
18	2,357	459	2,087	2,530	2,551	496
Total	91,114	52,814	47,328	111,434	97,604	64,805

Impacts on Roadway Bridges

Stratus Consulting (Final, 8/12/20100

Based on Average of GCMs: CCCMA CGCM 3.1, CNRM CM3.0, and GFDL 2.0

Figure 10. 2046-2065, 100-year, 24-hour storm, Scenario A1B.

^{*}Includes currently deficient bridges identified from National Bridge Inventory and located within hydrologic regions with a projected increase in modeled flow of greater than 20 percent, plus currently acceptable bridges located on non-sandy soil with a projected increase in modeled flow of greater than 60 percent, plus currently acceptable bridges located on sandy spill with a projected increase in modeled flow of greater than 100 percent from time period 1981-2000 to 2046-2065.

Threats to Existing Ag Water (Strzepek & Boehlert, 2010)

33

Threats to Existing Ag Water

Foresight Degion	2000 Agricultural Withdrawals (billion m ³)	No Climate Change		
Foresight Region		2050 M&I	EFRs	2050 M&I and EFRs
World	2,946	7.3%	9.4%	17.7%
Europe	263	2.5%	7.7%	14.4%
European Union	95	0.7%	12.8%	18.7%
Northwestern Europe	16	4.5%	11.7%	8.2%
United Kingdom	0.6	0.0%	0.0%	0.0%
Former Soviet Union	186	3.2%	10.0%	19.7%
Africa	246	9.8%	5.8%	15.8%
Sub-Saharan Africa	50	11.9%	7.2%	16.4%
Nile River Basin	146	9.1%	0.2%	9.2%
North America	255	-0.1%	15.2%	14.9%
Asia	2,060	8.8%	8.9%	18.6%
China	558	2.7%	7.3%	10.1%
India	866	13.5%	12.1%	27.7%
Latin America and the Caribbean	182	3.8%	12.3%	16.1%
Brazil	21	0.0%	0.0%	0.0%
Oceania	50	0.2%	14.3%	14.5%

Climate Change Threats to Ag Water

	Historic	WET	DRY
World	17.7	16.5	16.9
Europe	14.4	12.9	20.4
Africa	15.8	16.9	17.1
N.America	14.9	13.6	12
Asia	18.6	16.7	16.8
Latin Amer	16.1	19.9	16.8
Oceania	14.5	14.5	14.5

35

Water For Environment versus AG - Happening

- Australian farmers are furious about a government concession to nature Australia's water war
- AFTER a ten-year drought, farmers along the Murrumbidgee River now face ruin from a devastating flood. But it is the government that riles them as much as any caprice of nature. Last month officials called for a cut of nearly 40% in the volume of river water they take for irrigation. At a rowdy meeting in Narrandera, a river town, John Bonetti, a third-generation farmer, drew cheers from about 900 farmers when he told visiting bureaucrats and scientists, "If you think this is the end of the fight, I can assure you it's only the bloody start."

Summary

- SCALE MATTERS
- Cannot sum water impacts across sectors for Impacts and especially Adaptation must model Basin Scale Water Mgt Systems (Smith, Hurd next talk)
- FLOODING VERY IMPORTANT
 - Need "additional" information from GCMs
- CLIMATE CHANGE IN THE CONTEXT OF GLOBAL CHANGE

Precipitation 2100: CCSM v. MIROC

CC Impacts on Roadway Bridges

Stratus Consulting (Final, 8/12/2010)

Figure 16. Costs for adapting deficient bridges to climate change by time period and scenario.

IPCC AR4 Precipitation

Boston Design Storm 2050 Current Uncertainty in 100 yr Storm much greater than range of GCM Changes

Change in Precipitation Event Interval (%/°C)

